Rechercher dans ce blog

Affichage des articles dont le libellé est Education nationale. Afficher tous les articles
Affichage des articles dont le libellé est Education nationale. Afficher tous les articles

Comment devenir Auxiliaire de vie scolaire


Il faut être titulaire du baccalauréat ou d'un diplôme équivalent. Il n'y a pas de condition d'âge, excepté pour travailler en internat : 20 ans minimum.

Candidature auprès de son rectorat d'académie sur Internet, puis se faire recruter par un chef d'établissement, sur la base d'un contrat de droit public de 1 an renouvelable 6 fois.

L'auxiliaire de vie scolaire bénéficie d'une formation d'adaptation à l'emploi et d'un crédit de 200 h annuelles pour suivre une formation universitaire.

Salaire : 1 126 € net par mois pour un assistant de vie scolaire à temps plein. Mais les emplois proposés sont souvent des temps partiels.



Problèmes de mathématiques. Préparation au concours de Professeur des Ecoles




L'épreuve écrite de mathématiques du concours de recrutement de professeurs des écoles

1 -  un problème portant sur un ou plusieurs domaines des programmes de l’école ou du collège, ou sur des éléments du socle commun de connaissances, de compétences et de culture.
Ce problème peut, autour d’un thème donné, faire appel à plusieurs registres : numérique, algébrique,
géométrique, graphique, etc.
Il permet au candidat de montrer sa capacité à mettre en relation ces différents registres, mais aussi de
montrer une représentation correcte des différents statuts mathématiques des énoncés rencontrés :
données, hypothèses, propriétés ou théorèmes.
Ce problème peut comporter plusieurs parties; il peut être demandé au candidat de démontrer des
propriétés connues, de modéliser une situation en vue de la résolution d’un exercice concret ou de mener un
raisonnement à portée plus générale.

2 - exercices indépendants, complémentaires à la première partie,  permettant de vérifier les connaissances et compétences du candidat dans différents domaines des programmes de l’école ou du collège. Ces exercices pourront être proposés sous forme de questions à choix multiples, de questions à réponse construite ou bien d’analyses d’erreurs-types dans des productions d’élèves, en formulant des hypothèses sur leurs origines.
Des exercices de types différents peuvent être proposés dans un même sujet.
Les questions à choix multiples sont accompagnées d’une demande de justification ; elles permettent de
mettre en œuvre des types de raisonnement variés et notamment la preuve par présentation d’un contre
exemple.
Les questions à réponse construite peuvent dans certains exercices être des questions ouvertes qui
demandent pour leur résolution une prise d’initiative.

3- une analyse d’un dossier composé d’un ou plusieurs supports d’enseignement des mathématiques, choisis dans le cadre des programmes de l’école primaire qu’ils soient destinés aux élèves ou aux enseignants (manuels scolaires, documents à caractère pédagogique), et productions d’élèves de tous types, permettant d’apprécier la capacité du candidat à maîtriser les notions présentes dans les situations d’enseignement.
Cette partie peut porter sur une notion spécifique de l’un des trois cycles, ou sur une notion abordée de
façon progressive au cours de plusieurs cycles.
La maîtrise des notions s’exprime notamment à travers la capacité du candidat à mettre en perspective ces
notions et à expliciter les caractéristiques mathématiques des développements ou enrichissements
successifs.  (www.education.gouv.fr)

MATHS CONCOURS DE RECRUTEMENT DE PROFESSEURS DES ECOLES

Préparer le concours de recrutement de professeurs des écoles (CRPE) nécessite une maîtrise solide des concepts mathématiques de base, ainsi que la capacité à les expliquer clairement. Voici cinq exercices qui peuvent être pertinents pour ce type de concours :

Exercice 1 : Problème de Raisonnement

Énoncé : Dans une classe de 28 élèves, 15 sont des filles. Quel pourcentage de la classe est constitué de garçons ?

Objectif : Cet exercice vise à tester la compréhension des pourcentages et des proportions.

Exercice 2 : Géométrie

Énoncé : Un terrain de jeu est en forme de rectangle dont la longueur est le double de la largeur. Si la largeur mesure 20 mètres, quel est le périmètre du terrain ?

Objectif : Cet exercice évalue la compréhension des propriétés géométriques et des calculs de périmètre.

Exercice 3 : Résolution d'Équations

Énoncé : Trouvez la valeur de x dans l'équation : 3x + 5 = 2(x + 6).

Objectif : Tester la capacité à résoudre des équations simples.

Exercice 4 : Traitement de Données

Énoncé : Un sondage a été réalisé auprès de 200 personnes pour connaître leur fruit préféré. 80 personnes ont choisi la pomme, 45 la banane, 55 l'orange et le reste n'a pas de préférence. Représentez ces données dans un diagramme en barres.

Objectif : Évaluer la capacité à interpréter et présenter des données statistiques.

Exercice 5 : Problème Ouvert

Énoncé : Une école souhaite organiser une sortie scolaire. Le coût par élève est de 15 euros. Cependant, l'école a un budget de 300 euros pour cette sortie. Combien d'élèves au maximum peuvent participer à la sortie, et combien d'argent resterait-il après avoir payé pour tous les élèves ?

Objectif : Cet exercice teste la capacité à résoudre des problèmes pratiques impliquant des opérations arithmétiques et la gestion d'un budget.


Ces exercices sont conçus pour couvrir un éventail de compétences mathématiques, de la résolution de problèmes simples à la représentation de données, tout en mettant l'accent sur la clarté et la précision nécessaires dans l'enseignement.

Quelle est la différence entre un contrat de vacataire et un contrat de contractuel dans l'éducation nationale?

Recrutement des vacataires :

Le vacataire correspond à un intérimaire dans le privé. Il est payé à l'heure et il n'y a  pas de paiement des congés.
En 2009, la rémunération brute de l’heure de vacation est fixée à 34,30 € (environ 28,20 € net) sans garantie de reconduction de leur contrat.
Le recrutement est effectué par le chef d'établissement.
Les vacations peuvent être interrompues, par le chef d’établissement, en cas de difficultés sérieuses ou d'insuffisance pédagogique, après transmission aux services du rectorat d’un rapport circonstancié.
La durée de service des professeurs vacataires ne peut au total excéder, pour une année scolaire, dans un ou plusieurs établissements, un maximum de 200 heures de vacations. Dans cette limite, le service hebdomadaire est fixé par l'établissement qui engage le vacataire. Il n'y a  pas de paiement des congés.

Recrutement des contractuels :

Les professeurs contractuels en CDD sont recrutés pour pourvoir les postes vacants ou pour assurer le remplacement de professeurs titulaires absents.
Le contrat peut prévoir une période d'essai dont la durée peut être modulée en fonction de celle de l'engagement. Un CDD ne peut être renouvelé que par reconduction expresse, les clauses de tacite reconduction sont illégales et ne peuvent en aucun cas conférer au contrat une durée indéterminée. Lorsque le CDD est susceptible d'être re-conduit, l'administration notifie à l'agent non titulaire son intention de renouveler ou non l'engagement, au plus tard :

8 jours avant le terme du contrat lorsque la durée de celui-ci était inférieure à 6 mois,
• 1 mois avant le terme du contrat lorsque la durée de celui-ci était égale ou supérieure à 6 mois et inférieure
à 2 ans,
• 2 mois avant le terme du contrat lorsque la durée de celui-ci était égale ou supérieure à 2 ans,
• 3 mois avant le terme du contrat lorsque celui-ci est susceptible d'être reconduit pour une durée indéterminée.
Dans ce cas, la notification de la décision est précédée d'un entretien.
L'absence de décision de l'administration à l'issue d'un CDD et le maintien de fait en fonction de l'agent a pour effet de donner naissance à un nouveau CDD d'une durée égale à celle du contrat initial ou d'une durée convenue entre les parties.
L'absence de décision de l'administration n'a pas pour effet de conférer au contrat une durée indéterminée.
L'agent non titulaire auquel une proposition de renouvellement est adressée dispose de 8 jours pour faire connaître son acceptation.
A défaut de réponse dans ce délai, il est considéré comme renonçant à son emploi et ne peut pas prétendre aux allocations chômage.

Rémunération des contractuels
Hors catégorie : Personnes appelées à dispenser la totalité de leur enseignement dans un cursus post-bac
1ère catégorie : Personnes titulaires d’un doctorat
2ème catégorie : Personnes titulaires d’un DEA, DESS, master, maîtrise, licence
3ème catégorie : Personnes titulaires d’un DUT ou d’un BTS (essentiellement en enseignement professionnel).


Fin de contrat
Hormis la fin de fonction liée au terme de la mission, il peut être mis fin à un contrat de façon anticipée pour les motifs suivants : démission de la part de l’agent, résiliation du contrat pendant la période d’essai, licenciement.

La démission.
L’agent contractuel qui souhaite démissionner adresse une lettre recommandée au Rectorat, sous couvert de son chef d’établissement. L’agent est tenu de respecter un préavis : huit jours pour une ancienneté inférieure à six mois, un mois pour une ancienneté de six mois à deux ans, deux mois pour une ancienneté de
deux ans et plus.

Résiliation du contrat pendant la période d’essai 
Le contrat peut comporter une période d’essai d’une durée maximale de deux mois.
L’agent qui souhaite mettre fin à son contrat de travail, en cours ou en fin de période d'essai, doit en avertir
son employeur au moins 48 heures à l'avance. Il n’a pas à motiver la rupture de son contrat de travail. Il n’y a aucune raison à invoquer pour justifier la rupture du contrat en période d’essai.

Licenciement
Les principaux cas de licenciement sont :
- le licenciement pour insuffisance professionnelle, qui peut intervenir à l’issue d’un rapport défavorable du chef d’établissement et du corps d’inspection de votre discipline ou de votre spécialité sur votre manière de servir.
- le licenciement pris en tant que sanction disciplinaire en cas de " faute grave ".
- le licenciement économique (cas d’un agent en CDI dont le poste est supprimé lorsque les besoins d’enseignement dans sa discipline sont insuffisants pour permettre son affectation sur un poste).
Dans les deux premiers cas, l’administration a obligation de convoquer l’agent à un entretien préalable pour lui notifier les griefs retenus à son encontre. Le contractuel peut se faire accompagner à cet entretien d’un
délégué syndical et pouvoir consulter son dossier. De plus, l’administration est tenue de réunir la Commission Consultative Paritaire afin de recueillir son avis. (Voir VII. Sanctions disciplinaires)
Lorsque le licenciement est prononcé pour un motif autre que disciplinaire, l’agent contractuel bénéficie d’un préavis et d’une indemnité de licenciement proportionnelle à son ancienneté.

Condition pour percevoir l’ARE
L’ARE est due en cas de licenciement (y compris pour insuffisance professionnelle ou pour raison disciplinaire) ou de non renouvellement de contrat.
Pour percevoir l’ARE, il faut :
- dès la fin du contrat, s’inscrire à Pôle Emploi (la date d’inscription étant la date à laquelle démarre la période d’indemnisation) et le Rectorat doit lui fournir l’attestation employeur.
- avoir travaillé un minimum de 122 jours (ou 610 heures) au cours des 28 derniers mois (secteur public et privé cumulés) ou des 36 derniers mois (pour les agents de plus de 50 ans). 


Exercices corrigés de mathématique du concours de recrutement de professeurs des écoles (CRPE)

Lien

Epreuves de mathématique du concours de recrutement de professeurs des écoles (CRPE)

1- Nombres

Méthodes de dénombrement 



Systèmes de numération



Nombres rationnels et décimaux.



2- Calcul 

Calcul sur les nombres naturels et les nombres décimaux positifs

  • Les quatre opérations 
  • Propriétés des opérations
  • Algorithmes usuels de calcul des opérations
  • Calculer une addition posée, calculer une soustraction posée, calculer une multiplication posée, calculer une division posée


Calcul sur les nombres relatifs, les fractions, les puissances et les racines carrées 

  • Calcul sur les nombres relatifs
  • Calcul sur les fractions 
  • Calcul sur les puissances
  • Calcul sur les racines carrées


Multiples, diviseurs, nombres premiers 

  • Multiples et diviseurs d’un nombre naturel 
  • Chercher tous les diviseurs d'un nombre n 
  • Critères de divisibilité
  • Nombres premiers 
  • Chercher si un nombre n est premier 
  • Décomposer un nombre n en produit de facteurs premiers 
  • Chercher le nombre de diviseurs d'un nombre n 
  • Multiples et diviseurs communs à deux nombres 
  • Trouver le ppcm de deux nombres
  • Trouver le pgcd de deux nombres
  • Nombres naturels premiers entre eux 
  • Déterminer si un nombre a est un diviseur d'un nombre b


Notion de fonction numérique.

  • Fonction linéaire et fonction affine
  • Notion de fonction numérique 
  • Fonction linéaire 
  • Fonction affine 
  • Trouver l'équation d'une droite passant par deux points donnés


Proportionnalité

  • Suites de nombres proportionnelles 
  • Reconnaitre si deux suites de nombres sont proportionnelles .
  • Problèmes de proportionnalité 
  • Comparer des proportions 
  • Chercher une grandeur en fonction de plusieurs autres
  • Chercher une grandeur inversement proportionnelle à une autre


Applications de la proportionnalité : vitesse moyenne, pourcentage, échelle 

  • Trouver la vitesse moyenne, la distance ou la durée d’un parcours 
  • Appliquer un pourcentage 
  • Calculer un pourcentage 
  • Retrouver une quantité à laquelle a été appliqué un pourcentage
  • Calculer le résultat d'une augmentation donnée  en pourcentage
  • Calculer le résultat d'une diminution donnée en pourcentage
  • Échelle 

Représentation de données et statistiques

  • Construire un diagramme circulaire 
  • Statistiques 
  • Calculer la médiane d’une série 
  • Déterminer le 1er et le 3e  quartile d’une série  


Probabilités

  • Expérience aléatoire et évènement
  • Probabilité
  • Évènements particuliers
  • Calculer la probabilité d’un évènement


Calcul littéral, équations, inéquations

  • Calcul littéral 
  • Équations
  • Résoudre une équation de la forme ax = b 
  • Mettre un problème en équation
  • Résoudre un système de deux équations 
  • du premier degré à deux inconnues 
  • Inéquations
  • Résoudre un système de deux inéquations 
  • du premier degré à deux inconnues 

3- Géométrie

Droite, segment, cercle, perpendicularité, parallélisme

  • Droite, demi-droite, segment 
  • Cercle, disque 
  • Droites perpendiculaires
  • Tracer une droite perpendiculaire à une droite donnée passant par un point donné 
  • Droites parallèles
  • Tracer une droite parallèle à une droite donnée passant par un point donné 
  • Construire, décrire une figure géométrique 
  • Rédiger un programme de tracé d’une figure géométrique 
  • Tangente à un cercle 
  • Médiatrice d’un segment 
  • Tracer la médiatrice d’un segment 
  • Cercle circonscrit à un triangle 


Angles, polygones


  • Tracer la bissectrice d’un angle
  • Polygones 
  • Tracer un polygone régulier sans rapporteur
  • Triangles
  • Calculer la mesure d'un angle
  • Quadrilatères


Démonstration en géométrie plane

  • Le chainage avant 
  • Le chainage arrière
  • Propriété et réciproque
  • Démontrer que deux droites sont perpendiculaires ou qu’un triangle est rectangle
  • Démontrer que deux droites sont parallèles
  • Démontrer qu’un point est le milieu d’un segment 
  • Démontrer que trois points sont alignés

Théorèmes de Pythagore et de Thalès

Trigonométrie dans le triangle rectangle 
  • Calcul d’une longueur 
  • Calculer une longueur avec la trigonométrie
  • Calcul de la mesure d’un angle
  • Calculer la mesure d’un angle avec la trigonométrie

Transformations
  • Tracer le symétrique d’un point par rapport à une droite
  • Chercher l’axe de symétrie d’une figure 
  • Tracer le symétrique d’un point par rapport à un point
  • Chercher le centre de symétrie d’une figure
  • Agrandissement et réduction d’une figure
  • Construire l’agrandissement ou la réduction d’une figure

Géométrie dans l’espace
  • Solides
  • Représentation d’un solide
  • Patrons de solide
  • Orthogonalité et parallélisme dans l’espace
  • Section d’un solide par un plan 

4- Mesure

  • Périmètre et surfaces 
  • Aire 
  • Convertir des unités d’aires
  • Calculer l’aire d’une surface 
  • Volume
  • Convertir des unités de volumes 

Exercice d'aptitude numérique aires et volumes, conversions. (CRPE)

Une piscine rectangulaire de 12,50 m sur 6,30 m doit être remplie d'eau à ras bord. Le fond de cette piscine est en pente comme l'indique le schéma ci dessous .

1) A l'aide des mesures indiquées sur le schéma, calculez le pourcentage de pente de cette piscine.

2) Quel est le volume d'eau contenu dans cette piscine? (en m³)

3) Combien faut-il de temps pour remplir cette piscine avec une pompe ayant un débit de 18 M³/heure ?
 (en heures - minutes - secondes)

4) Cette piscine est totalement carrelée sur les côtés et sur le fond.
Quelle est la surface de carrelage nécessaire ?

5) Le carrelage utilisé était affiché à 84 francs/m2. Le fournisseur fait une remise de 30%.
Quel est le prix d'un mètre carré de ce carrelage soldé en euro (1 euro = 6,55957 francs) ?

Correction exercice de la piscine

Autres problèmes :

Epreuves du concours de recrutement des enseignants 2014

Épreuves d’admissibilité


Epreuve écrite de Français 
La maîtrise de la langue française, la connaissance de la langue, la capacité à comprendre et analyser des textes, la capacité du candidat à maîtriser les notions présentes dans les situations d’enseignement. 
Durée de l’épreuve : 4 heures 
Notée sur 40 points. 

Epreuve écrite de Mathématiques 
La maîtrise des savoirs disciplinaires nécessaires à l’enseignement des mathématiques à l’école primaire. 
Durée de l’épreuve : 4 heures 

Épreuves d’admission 

Épreuve 1 
Elle prend la forme d’une mise en situation professionnelle dans un domaine d’enseignement choisi au moment de l’inscription au concours parmi les domaines suivants : sciences et technologie, histoire, géographie, histoire des arts, arts visuels, éducation musicale, instruction civique et morale. 
Elle vise à évaluer les compétences scientifiques, didactiques et pédagogiques du candidat dans le domaine 
choisi. 
Durée de l’épreuve : 1 heure 
Notée sur 60 points. 
Épreuve 2 
 L’épreuve prend la forme d’un entretien à partir d’un dossier. 
La première partie vise à évaluer les compétences du candidat pour l’enseignement de l’éducation physique et sportive (EPS). 
La deuxième partie vise à apprécier les connaissances du candidat sur le système éducatif français à partir 
d’un dossier de cinq pages maximum fourni par le jury. 
Durée de l’épreuve : 3 heures 
Durée totale de l’épreuve : 1 heure 15 minutes 
Notée sur 100 points

Programme de math à réviser pour le concours de professeurs des écoles (CRPE)


Programme de math à réviser

1- Nombres

Méthodes de dénombrement 

  • Dénombrer à l’aide d’un tableau à double entrée 
  • Dénombrer avec un arbre de choix .
  • Faire preuve de méthode et d’organisation


Systèmes de numération

  • Systèmes de numération de type additif
  • Systèmes de numération de type positionnel
  • Numération de position de base quelconque
  • Numération orale
  • Écriture des nombres en lettres


Nombres rationnels et décimaux.

  • Nombres réels
  • Reconnaitre si deux fractions sont égales 
  • Obtenir des fractions égales 
  • Trouver la fraction irréductible
  • Comparer deux fractions
  • Trouver la partie entière d'une fraction
  • Comparer deux nombres décimaux
  • Trouver l’écriture décimale avec suite périodique d’un nombre rationnel non décimal 
  • Trouver la forme fractionnaire d’un nombre donné sous forme d'une écriture décimale comportant une suite périodique 


2- Calcul 

Calcul sur les nombres naturels et les nombres décimaux positifs

  • Les quatre opérations 
  • Propriétés des opérations
  • Algorithmes usuels de calcul des opérations
  • Calculer une addition posée, calculer une soustraction posée, calculer une multiplication posée, calculer une division posée


Calcul sur les nombres relatifs, les fractions, les puissances et les racines carrées 

  • Calcul sur les nombres relatifs
  • Calcul sur les fractions 
  • Calcul sur les puissances
  • Calcul sur les racines carrées


Multiples, diviseurs, nombres premiers 

  • Multiples et diviseurs d’un nombre naturel 
  • Chercher tous les diviseurs d'un nombre n 
  • Critères de divisibilité
  • Nombres premiers 
  • Chercher si un nombre n est premier 
  • Décomposer un nombre n en produit de facteurs premiers 
  • Chercher le nombre de diviseurs d'un nombre n 
  • Multiples et diviseurs communs à deux nombres 
  • Trouver le ppcm de deux nombres
  • Trouver le pgcd de deux nombres
  • Nombres naturels premiers entre eux 
  • Déterminer si un nombre a est un diviseur d'un nombre b


Notion de fonction numérique.

  • Fonction linéaire et fonction affine
  • Notion de fonction numérique 
  • Fonction linéaire 
  • Fonction affine 
  • Trouver l'équation d'une droite passant par deux points donnés


Proportionnalité

  • Suites de nombres proportionnelles 
  • Reconnaitre si deux suites de nombres sont proportionnelles .
  • Problèmes de proportionnalité 
  • Comparer des proportions 
  • Chercher une grandeur en fonction de plusieurs autres
  • Chercher une grandeur inversement proportionnelle à une autre


Applications de la proportionnalité : vitesse moyenne, pourcentage, échelle 

  • Trouver la vitesse moyenne, la distance ou la durée d’un parcours 
  • Appliquer un pourcentage 
  • Calculer un pourcentage 
  • Retrouver une quantité à laquelle a été appliqué un pourcentage
  • Calculer le résultat d'une augmentation donnée  en pourcentage
  • Calculer le résultat d'une diminution donnée en pourcentage
  • Échelle 

Représentation de données et statistiques

  • Construire un diagramme circulaire 
  • Statistiques 
  • Calculer la médiane d’une série 
  • Déterminer le 1er et le 3e  quartile d’une série  


Probabilités

  • Expérience aléatoire et évènement
  • Probabilité
  • Évènements particuliers
  • Calculer la probabilité d’un évènement


Calcul littéral, équations, inéquations

  • Calcul littéral 
  • Équations
  • Résoudre une équation de la forme ax = b 
  • Mettre un problème en équation
  • Résoudre un système de deux équations 
  • du premier degré à deux inconnues 
  • Inéquations
  • Résoudre un système de deux inéquations 
  • du premier degré à deux inconnues 

3- Géométrie

Droite, segment, cercle, perpendicularité, parallélisme

  • Droite, demi-droite, segment 
  • Cercle, disque 
  • Droites perpendiculaires
  • Tracer une droite perpendiculaire à une droite donnée passant par un point donné 
  • Droites parallèles
  • Tracer une droite parallèle à une droite donnée passant par un point donné 
  • Construire, décrire une figure géométrique 
  • Rédiger un programme de tracé d’une figure géométrique 
  • Tangente à un cercle 
  • Médiatrice d’un segment 
  • Tracer la médiatrice d’un segment 
  • Cercle circonscrit à un triangle 


Angles, polygones


  • Tracer la bissectrice d’un angle
  • Polygones 
  • Tracer un polygone régulier sans rapporteur
  • Triangles
  • Calculer la mesure d'un angle
  • Quadrilatères


Démonstration en géométrie plane

  • Le chainage avant 
  • Le chainage arrière
  • Propriété et réciproque
  • Démontrer que deux droites sont perpendiculaires ou qu’un triangle est rectangle
  • Démontrer que deux droites sont parallèles
  • Démontrer qu’un point est le milieu d’un segment 
  • Démontrer que trois points sont alignés

Théorèmes de Pythagore et de Thalès

Trigonométrie dans le triangle rectangle 
  • Calcul d’une longueur 
  • Calculer une longueur avec la trigonométrie
  • Calcul de la mesure d’un angle
  • Calculer la mesure d’un angle avec la trigonométrie

Transformations
  • Tracer le symétrique d’un point par rapport à une droite
  • Chercher l’axe de symétrie d’une figure 
  • Tracer le symétrique d’un point par rapport à un point
  • Chercher le centre de symétrie d’une figure
  • Agrandissement et réduction d’une figure
  • Construire l’agrandissement ou la réduction d’une figure

Géométrie dans l’espace
  • Solides
  • Représentation d’un solide
  • Patrons de solide
  • Orthogonalité et parallélisme dans l’espace
  • Section d’un solide par un plan 

4 - Mesure

  • Périmètre
  • Aire 
  • Convertir des unités d’aires
  • Calculer l’aire d’une surface 
  • Volume
  • Convertir des unités de volumes 

5 - Annales de mathématique 2014

Sujets corrigés des concours à télécharger en pdf!